Math 10A
Quiz 8; Friday, 7/27/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. True FALSE It is possible for a BVP to have exactly 2 solutions.

Solution: A BVP can have 0,1 , or ∞ solutions, not 2 .
2. TRUE False If we can use both integrating factors and separable equations to solve a differential equation, we must be able to write it in the form $\frac{d y}{d t}=$ $(a y+b) f(t)$.

Solution: It must be separable so it must be of the form $g(y) f(t)$ and since we can use integrating factors, it must be linear in y as well so $g(y)$ must be a linear function or $a y+b$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (5 points) Find a second order linear homogeneous recurrence relation such that $a_{n}=2^{n}+3 \cdot 4^{n}$ is a solution to it.

Solution: Since the bases of the exponents are $\lambda=2,4$, the characteristic polynomial is $(\lambda-2)(\lambda-4)=\lambda^{2}-6 \lambda+8=0$. This corresponds to $a_{n}-6 a_{n-1}+$ $8 a_{n-2}=0$ or $a_{n}=6 a_{n-1}-8 a_{n-2}$.
(b) (5 points) Solve the differential equation $y^{\prime}=e^{t}+y$ with $y(0)=1$.

Solution: We want to use integrating factors because it is linear. It is $y^{\prime}-y=$ e^{t}. The integrating factor is $I(t)=e^{\int-1 d t}=e^{-t}$. Multiplying through gives us $e^{-t} y^{\prime}-e^{-t} y=e^{t} e^{-t}=1$. Integrating gives us $e^{-t} y=t+C$ so $y=t e^{t}+C e^{t}$. Now we plug in the initial condition of $y(0)=1$ to get $1=0 e^{0}+C e^{0}=C$ so $y=t e^{t}+e^{t}$.

